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Abstract

This paper demonstrates a fuzzy Hopfield neural network for segmenting multispectral MR brain images. The
proposed approach is a new unsupervised 2-D Hopfield neural network based upon the fuzzy clustering technique. Its
implementation consists of the combination of 2-D Hopfield neural network and fuzzy c-means clustering algorithm
in order to make parallel implementation for segmenting multispectral MR brain images feasible. For generating
feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need
for finding weighting factors in the energy function which is formulated and based on a basic concept commonly used
in pattern classification, called the ‘within-class scatter matrix” principle. The suggested fuzzy c-means clustering
strategy has also been proven to be convergent and to allow the network to learn more effectively than the
conventional Hopfield neural network. The experimental results show that a near optimal solution can be obtained
using the fuzzy Hopfield neural network based on the within-class scatter matrix.
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1. Introduction body. In clinical diagnosis, MRI systems have
become a standard tool for detecting a variety of

Segmentation (tissue classification) of the medi- tumors, lesions, and abnormalities. Differing from
cal images obtained from magnetic resonance other diagnostic techniques, the MRI systems can
(MR) images is a primary step in the observation produce several images, each of which emphasizes
of internal anatomical soft tissues in the human a different fundamental parameter of internal

anatomical structures in the same body section
with multiple contrasts, based on local variations
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multi-parametric nature of MRI provides the po-
tential for greatly improved sensitivity and specifi-
city in the detection of pathological conditions. In
a sense, the images obtained from MRI systems
resemble the multispectral images of the earth
(LANDSAT images) obtained from remote sens-
ing satellites.

Manual segmentation is more difficult, time-
consuming, and costly than automated processing
by the computer system. Due to the low tissue
contrast, unclear tissue boundaries, and poor
hand-eye consistency, errors sometimes occur.
The advantage of generating consistent results
would be offered by the automated procedures in
MR images segmentation. The automated seg-
mentation of MR images into anatomical tissues,
fluids, and structures is an interesting area in
MRI. In clinical medicine, tissue classification of
normal and pathological tissue structures using
multispectral MR images provides a great poten-
tial [1]. Several studies on the automatic recogni-
tion of normal tissues in the brain and its
surrounding tissues have been proposed. In gen-
eral, a quantitative strategy for the analysis of
brain morphometry requires the image be seg-
mented into different anatomic tissue components
as a main step for the determination of volume,
shape, and localization [2].

Multispectral classification has been described
as generating better discrimination than single
spectral classification [3]. Classical methods range
from simple thresholding to more sophisticated
techniques including methods based on local fea-
tures such as the median, the variance, or the
gradient. These techniques, however, do not take
advantage of the multi-dimensional nature of the
data [4]. It has been indicated that multispectral
analysis of MR images is a valuable tool to
recognize the most common normal tissues in the
brain and surrounding structure [5]. The segmen-
tation of classification of tissues obtained from
multi-dimensional MRIs has been successfully
employed in the past [1-10]. The analysis of such
multi-dimensional images can be completed by
using supervised or unsupervised classification
methods. In supervised classification approaches,
the region of interest (ROI) is defined by the
associated human interaction and the algorithm

trains on the ROI and then each pixel is flagged in
the associated scenes with a given signature. The
unsupervised classification approaches classify the
multi-dimensional data sets without the aid of
training set, but a postprocessing step is required
to correct proper pixels categorized in wrong clus-
ters.

Artificial neural networks (ANN), which have
the potential in parallel processing using the hard-
ware implementation either in a synchronous or
asynchronous manner, are powerful computing
systems whose architecture is made of a massive
number of densely interconnected and nonlinear
computing elements (called neurons). In the field
of pattern recognition and decision making,
ANNSs have been established as a promising im-
plementation of statistical, nonparametric, dis-
criminant analysis because they can learn and
synthesize the available information without re-
quiring any statistical modeling of the problem
[11]. The ANN systems possess some unique pro-
cessing capabilities which are not found in the
conventional, sequential computing systems. The
architectures of ANN systems incorporating fuzzy
clustering strategy have been proposed in the past
[12,13]. Bezdek et al. [12] has proposed a fuzzy
Kohonen clustering network which integrated the
fuzzy c-means model into the learning rate and
updating strategies of the Kohonen network. A
feedforward, back error propagation neural net-
work implementation of the fuzzy c-means al-
gorithm has been derived by Davis et al. [13]. An
unsupervised scheme called fuzzy Hopfield neural
network (FHNN), for the classification of multi-
dimensional MR images based on the within-class
scatter matrix, is proposed to generate associated
fuzzy partition of MR brain images in this paper.

The remainder of this paper is organized as
follows. Section 2 describes the data acquisition,
Section 3 reviews the fuzzy clustering techniques,
Section 4 proposes the medical image segmenta-
tion using a FHNN, Section 5 shows the conver-
gence of the FHNN on the mathematical
derivations, Section 6 presents several experimen-
tal results; and finally, Section 7 gives the discus-
sion and conclusions.



J.-S. Lin et al. [ International Journal of Biomedical Computing 42 (1996) 205-214 207

2. Data acquisition

Two separate multispectral MR images of the
brain, acquired from a patient with normal physi-
ology (Fig. 1) and one example of a patient
diagnosed with a cerebral infarction in the brain
(Fig. 2), are to be studied in this paper. Each
multispectral image consists of five channel im-
ages formed as 256 x 256 pixels and 8-bit gray
levels. As the reference [3], both multispectral
images were acquired with 7,-weighted sequences
for channel images CH=1, 2, 4, and 5 and

(@) (b)

(c) (d)

(e)

Fig. 1. The multispectral training MR brain images with
normal physiology: (a) TR,/TE, = 1500 ms/57 ms; (b) TR,/
TE, = 1500 ms/76 ms; (c¢) TR;/TE; =500 ms/20 ms; (d) TR,/
TE, = 2500 ms/75 ms; (¢) TRs/TE= 2500 ms/100 ms.

(¢)

Fig. 2. The multispectral training MR images with cerebral
infarction in the brain: (a) TR,/TE, = 2500 ms/25 ms; (b)
TR,/TE, = 2500 ms/50 ms; (¢) TRy/TE; = 500 ms/20 ms;
(d) TR,/TE, = 2500 ms/75 ms; (¢) TRs/TEs; = 2500 ms;/100
ms.

T,-weighted signal for channel image 3. The ac-
quisition parameters with different repetition time
(TR) and echo time (TE) are TR,/TE,=1500
ms/57 ms, TR,/TE, = 1500 ms/76 ms, TR;/TE; =
500 ms/20 ms TR,/TE,=2500 ms/75 ms, and
TR,/TEs= 2500 ms/100 ms for multispectral im-
age 1 (Fig. 1) and TR,/TE, =2500 ms/25 ms,
TR,/TE, = 2500 ms/50 ms, TR;/TE, = 500 ms/20
ms TR,/TE,=2500 ms/75 ms, and TR,/TE;=
2500 ms;/100 ms for multispectral image 2 (Fig. 2).
The cerebral spinal fluid (CSF) appears bright in
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the T,-weighted image and dark in the 7)-
weighted image. The T,-weighted image shows the
gray matter (GM) slightly brighter when com-
pared with the white matter (WM), while the
T,-weighted image displays that the gray matter is
darker than the white matter. The hemorrhage
usually appears with cerebral infarction on a pa-
tient. The hemorrhagic infarction can be clearly
depicted on the MR images. The emergent infarc-
tion area appears slightly dark, which can not be
recognized easily in the 7-weighted image. The
T,-weighted image on the other hand shows good
differentiation between the infarction area and
other tissues with the infarction area brighter as
compared with the other tissues.

It has been pointed out that accurate measure-
ment of white matter, gray matter, and CSF
volumes in the living human brain is critical for
understanding how certain diseases affect these
tissues [1]. Therefore, the skin or fat and other
surrounding structures in the multispectral brain
images are masked into background cluster in this
study. The acquisition parameters were selected to
capture as much different information as possible
in the five channel images. Each nonzero pixel
image location then consists of five gray scale
values which make up what we will refer to as a
‘pixel vector.’

3. Fuzzy clustering techniques

Clustering is a process for classifying objects or
patterns in such a way that samples within a
cluster are more similar to one another than
samples belonging to different clusters. Similarity
measures employed to classify samples depend on
object characteristics based on distance, vector,
entropy, etc. There have been many applications
based on clustering paradigms. These applications
include image segmentation, speech recognition,
and data comparison. Many clustering strategies
have been used, such as hard clustering algorithm
and soft (fuzzy) clustering algorithm, each of
which has its own special characteristics. The hard
clustering algorithm, for example, c-means
[14,15], will converge the objective function itera-
tively to a local minimum from each sample to the

nearest cluster centroid. However, rather than
assigning each training sample to one and only
one cluster, the fuzzy clustering methods assign
each training sample with a degree of uncertainty
described by a membership grade. A pixel’s mem-
bership grade function with respect to a specific
cluster indicates to what extent its properties be-
long to that cluster. The larger the membership
grade (close to 1), the more likely that the pixel
belongs to that cluster.

Fuzzy clustering strategies are mathematical
tools for detecting similarities between members
of a collection of samples. Since the introduction
of the fuzzy set theory in 1965 by Zadeh, it has
been applied in a variety of fields [1,8,10,16-19],
including medical image analysis [1,8,10,16]. The
theory of fuzzy logic provides a mathematical
framework to capture the uncertainties associated
with human cognition processes. In medical image
analysis, Brandt et al. [1] proposed a fuzzy c-
means approach to estimate volumes of cere-
brospinal fluid (CSF), white and gray matters of
the MR brain images. A fuzzy c-means clustering
algorithm was applied in computerized analysis
and information extraction of medical MR images
by Delapaz et al. [10].

The fuzzy c-means (FCM) clustering algorithm
was first introduced by Dunn [20], and the related
formulation and algorithm was extended by
Bezdek [21]. The FCM approach, like the conven-
tional clustering techniques, is to minimize the
criteria in the least squared error sense. For ¢ >2
and m any real number greater than 1, the al-
gorithm chooses ;1 X —[0, 1] so that Zu; =1 and
weR? for j=1,2,...,c to minimize the objec-
tive function:

x,—w|? (1)

J F(.‘/l'I:% 2 Z (/‘i.‘j)m
j=1i=1
where y;; is the value of the jth membership
grade on the ith sample x, The vectors
Wy....,W,....,w, can be regarded as proto-
types for the clusters represented by the member-
ship grades, and they are called cluster centroids.
For the purpose of minimizing the objective func-
tion, the cluster centroids and membership grades
are chosen so that a high degree of membership
occurs for samples close to the corresponding
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cluster centroids. The FCM algorithm, being a
well-known and powerful method in clustering
analysis, 1s reviewed as follows:

3.1. FCM algorithm

3.1.1. Step 1

Initialize the cluster centroids w; (2<j<c),
fuzzification parameter m (1 <m < oo) and the
value € > 0.

3.1.2. Step 2
Calculate the membership matrix U={[y, ]
using Eq. 2 as below.

1 1jom—1)
(( )2>

Hij=—C 1 m—1) 2
£ (o)

j=1

where d, ; is the Euclidean distance between train-
ing sample x; and the class centroid w;.

3.1.3. Step 3
Update the cluster centroids

1 n
Wy=-——""" Z (,Ui.j)m"' (3)
o i=1
Zl (11,7
3.1.4. Step 4
Compute A=max((U'*"—-U?). If A>e
then go to Step 2; otherwise go to Step 5.

3.1.5. Step 5

Find the results for the final class centroids.

The value m, prechosen as any value from 1 to
o0, is called the fuzzification parameter (or expo-
nential weight), and it reduces the noise sensitivity
in the computation of the cluster centroids. In
addition, the effect for g, ; is dependent upon the
m. The larger the value m (m > 1), the higher the
dependence will be.

4. Fuzzy Hopfield neural network

Over the last few years, the Hopfield [22,23]
neural network has been studied extensively with

its features of simple architecture and potential
for parallel implementation. Yang et al. [24] have
analyzed both exponential and stochastic stabili-
ties of the Hopfield neural network. Polygonal
approximation using a competitive Hopfield neu-
ral network was demonstrated by Chung et al.
[25]. In [25], The winner-takes-all rule has been
adopted in the 2-dimensional discrete Hopfield
neural network to eliminate the need for finding
weighting factors in the energy function. Endocar-
dial Boundary detection using the Hopfield neural
network was described by Tsai et al. [26];
Washizawa [27] applied the Hopfield neural net-
work to emulate saccades; optimal guidance using
the Hopfield neural network was presented by
Steck et al. [28]. Amatur et al. [7] used the 2-D
Hopfield neural network for the segmentation of
multispectral MR brain images. The Hopfield
neural network is a well-known technique used
for solving optimization problems based on the
Lyapunov energy function. Here a conventional
two-dimensional parallel Hopfield network for
clustering problem is first reviewed. The network
consists of N x ¢ neurons which are fully inter-
connected neurons. Let V., denote the binary
state of neuron (x,7) and W, ; be the intercon-
nection weight between the neuron (x, /) and the
neuron (y, /). A neuron (x, i) receives each neuron
(y,/j) with W_ .., ;and a bias [, from outside can
then be expressed by

N I
Netx.i: Z Z W\',t’;y,er,_/ + 1.\317 (4)
y=1j=1
and the Lyapunov energy function of the two-
dimensional Hopfield network is given by

N g ¢
Z Z V u»/ \/
N 13 ’
-3 YL 5)

Each column of the Hopfield neural network
represents a class and each row represents a k-di-
mensional (k= 5 for this article) feature vector of
a training pixel in a proper class. The network
reaches a stable state when the Lyapunov energy
function is minimized. For example, a neuron
(x, 1) in a firing state (i.e., V., =1) indicates that

'n[\/J’z.
MM«

I\Jl'—‘
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pixel vector z, belongs to class i. But, in the fuzzy
Hopfield neural network, a neuron (x,i) in a
fuzzy state indicates that pixel vector z, belongs to
class i with a degree of uncertainty described by a
membership function.

In a multispectral image (5 channel images in
this article), each pixel vector is assigned one of
n X n training samples. If the number of classes ¢
1s defined in advance, then the FHNN consists of
n x n by ¢ neurons which can be conceived as a
two-dimensional array. In this section, we will
show that the segmentation for multispectral MR
brain images can be mapped onto a 2-D Hopfield
neural network so that the cost function serves as
the energy function of the network. The idea is to
form the energy function of the network in terms
of the intra-class energy function. In the pattern
recognition application, the degree of natural as-
sociation is expected to be high among members
belonging to the same class, and low among mem-
bers of different clusters. In other words, the
intraset (within-class) distance should be small.
The proposed technique first assigns pixel vectors
to their associated classes with an uncertain de-
gree of membership grade in such a manner that
the Euclidean distance between arbitrary samples
and their cluster centroid is minimized. This is
referred to as the intra-class assignment. In linear
discriminate analysis [29], the concept of within-
class scatter matrix is widely used for class separa-
bility. The iteratively and synchronously updated
synaptic weight between the neuronal intercon-
nections will gradually force the network to con-
verge into a stable state where its energy function
is minimized.

Using the within-class scatter matrix criteria,
the optimization problem can be mapped into a
two-dimensional Hopfield neural network with
the fuzzy c-means strategy for the segmentation of
multispectral MR brain images. The total
weighted input for neuron (x,{) and Lyapunov
energy in k-dimensional image, as defined in Eqs.
4 and 5, can be modified as

Netx.i = ]zx - wilz + Ix,i

k nxn

2
= Z l:z,\",p‘— Z] VV(.x.i:y,i),p(#y,i)m:l +I,\‘,i
y=

p=1

(6)

and

nxn ¢

1
=§ Z Z (/ux,i)

x=1i=1

k nxn 2
X z [ZA\:;) - Z W(,\‘,i:y.i),p (/uy(i)m}
p=1 y=1

nxn ¢

- Y X L) )
x=1i=1

where || is the Euclidean distance in k-dimen-

sional features, X727 W .., (1, )" is the total

v=1

weighted input received from the component at
dimension p of neuron (y, {) in row i, u,; is the
output state at neuron (x, i), and m is the fuzzifi-
cation parameter. Each column of this modified
Hopfield network represents a class and each row
represents a pixel vector in a proper class. The
network reaches a stable state when the modified
Lyapunov energy function is minimized. For ex-
ample, a neuron (x, /) in a maximum membership
state indicates that pixel vector z, belongs to class
i

Using the within-class scatter matrix criteria
and in order to generate an adequate classifica-
tion, we define the objective function as follows:

axa ¢

A
E': 5‘ Z Z (/’l\‘,i)m

x=1i=1

n XA 2

k
x Xz = X )"
r= r=t Z (.uh,i)m

h=1

+ l—; [(ni" i ﬂm> —nx n:r (8)

x=1i=1

where E is the total intra-class scatter energy that
accounts for the scattered energies distributed by
all pixel vectors in the same class with a member-
ship grade, and both z, , and z,, are the trained
pixel components in dimension p at rows x and y
respectively.

The first term in Eq. 8 is the within-class scatter
energy which is the Euclidean distance between
samples and the cluster centroid over ¢ clusters.
The second term guarantees that the #» x n sam-
ples in Z can only be distributed among these ¢
classes. More specifically, the second term, which
is the penalty term, imposes constraints on the
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objective function and the first term minimizes the
intra-class Euclidean distance from a pixel vector
to the cluster centroid in any given cluster.

As mentioned in reference [25], the quality of
classification result is very sensitive to the weight-
ing factors. Searching for optimal values for these
weighting factors is expected to be time-consum-
ing and laborious. To alleviate this problem, a
2-D Hopfield neural network with a fuzzy c-
means clustering strategy, called FHNN, is pro-
posed so that the penalty terms can be handled
more efficiently. All the neurons on the same row
compete with one another to determine which
neuron is the maximum membership value be-
longing to class i. In other words, the summation
of the membership state in the same row equals 1,
and the total membership states in all #» rows
equal n. This also ensures that all training pixel
vectors will be classified into these ¢ classes. The
modified Hopfield neural network FHNN enables
the scatter energy function to converge rapidly
into a minimum value. Then, the scatter energy of
the FHNN can be further simplified as

1n><n 4

E=§ z Z (ﬂ.x‘,i)m

x=1i=1

nxn 2

a 1
X Zl Zx.p - Zl nxn Zy,p(:uy,i)m (9)
r- T hz ()"
=1

By using Eq. 9, which is a modification of Eq.
8, the minimization of energy E is greatly sim-
plified since it contains only one term and hence
the requirement of having to determine the
weighting factors 4 and B vanishes. Comparing
Eq. 9 with the modified Lyapunov function Eq. 7,
the synaptic interconnection weights and the bias
input can be obtained as

W(XJ) DL nxn Zy.ps (10)
Z (uni)"
h=1
and
Ix,i =0. (l 1)

By introducing Eqgs. 10 and 11 into Eq. 6, the
input to neuron (x, i) can be expressed as

k Axn 1 2
Net, ;= Z Zap Z P 2y (thy )"
et v Z (#n )™
e (12)
Consequently, the input-output function (i.e.,
membership function) for the x-th row is given as

< Net. . 1/im—17-1
;= —= for all . 13
el B ()] e o

Using Egs. 9, 12 and 13, the FHNN can clas-
sify ¢ clusters in a parallel manner which is de-
scribed as follows:

4.1. FHNN algorithm

4.1.1. Step 1

Input a set of training pixel vectors Z =
{21, 25 . . }, fuzzification parameter m (1 <
m < o0), the number of clusters ¢, and randomly
initialize the states for all neurons U=[u,,]
(membership matrix).

”ZHXI’I

4.1.2. Step 2
Compute the weighted matrix using Eq. 10.

4.1.3. Step 3
Calculate the input to each neuron (x, i):

k nxn 2

1
Net,,= 3, |z Yooz )"

X,p

r=t = Z (#n )"
h=1
4.14. Step 4
Apply Eq. 13 to update the neuron’s member-
ship value in a synchronous manner.

4.1.5. Step 5
Compute A=max (U —UY)). If A>e,
then go to Step 2, otherwise go to Step 6.

4.1.6. Step 6

Find the results for the final membership matrix
with a defuzzification process.

In Step 3, the inputs are calculated for all
neurons. In Step 4, the fuzzy c-means clustering
method is applied to determine the fuzzy state
with the synchronous process. Here, a syn-
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chronous iteration is defined as an updated fuzzy
state for all neurons using a software simulation.

In the last step, a defuzzification process used in
[30] is applied to the fuzzy partition data to
obtain the final segmentation. A pixel is assigned
to a cluster when its membership grade in that
cluster is larger than 0.5. If none of its member-
ship grades satisfy this criteria, then the class
possessing the maximum grade is chosen, pro-
vided that the sum of the largest two grades is
greater than 0.5, and that these two clusters are
neighboring clusters in terms of the distance mea-
sure. Therefore, no ambiguity in segmentation is
encountered.

5. Convergence of the FHNN

Proof of the convergence of the FHNN is im-
portant because it guarantees that the network
evolution will reach a stable state. The scatter
energy function can be rewritten as follows:

1 ¢ nxn
E= E Z z (:ux.,i)m
i=lx=1
k nxn 1 2
x Zl Zxp T 21 "X n ZJxﬁ(/‘y-i)m
" TN ()"
hA=1
(14)
which implies that
1 ¢ nxn
E<s ) X
2 i=1x=1
k nxn 1 2
X Z] Zxp »Zl nxn Zy“p(:u.!uf)m
r= v z (#a )™
=1
(15)

Eq. 15 shows that the objective energy is less than
or equal to the total distance between training
samples and the cluster centroids. This proves
that E is bounded from below.

Eq. 14, the same as Eq. 1, is based on a
least-squared errors criteria, and it is rewritten as
follows:

1 ¢ nXn
E = 5 Z Z (tu,\',i)mlzx - W,- : (16)
i=1x=1
and
k nxn 1
wi= 3y Y ", )", a7
D WG

h=1

where w; (cluster centroid 7) is the total intercon-
nection weight received from all neurons x in the
same column / and 4, is the unit vector in dimen-
sion p. Thus the reassignment of a membership
degree belonging to cluster i in trained vector z,
will result in a decrease of the objective energy
function whenever z, is located closer to a feasible
cluster centroid. Consequently, the FHNN will
converge to a satisfactory result after several iter-
ations of updating the reassignment matrix.

6. Experimental results

In order to generate near optimal segmented
results using the FHNN, the network-associated
parameter such as fuzzification parameter (m) is
set at 1.5. To begin the segmentation, a random
membership grade matrix, from which the proto-
typical centroid for each cluster can be calculated
for each of the five channel images in the initial
condition, must be provided for the proposed
FHNN. If the initial centroid values are far from
the final solution values, then more iterations will
be required to converge to a feasible result. The
final results was observed in repeated tests to be
independent of the choice of initial cluster cen-
troids. The segmented images are shown in Fig.
3a and b, respectively. Due to the spectral vari-
ability in the medical image data, setting con-
straints on the energy function for smoothing the
noise is difficult. The segmented image may ex-
hibit proper pixels categorized in wrong clusters.
Such errors can be reduced by a majority filter
[31] in postclassification filtering. Using the ma-
jority filter, a moving mask is passed over the
whole segmented image. Multiple passes can be
performed to control the degree of smoothness at
the expense of losing some small local structures.

In Fig. 3a, the segmented result can outline the
CSF, the white matter, and the gray matter from
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(a) (b)

Fig. 3. Classified images: (a) labeled from Fig. 1; (b) labeled
from Fig. 2.

the normal transaxial MR images of the brain
shown in Fig. 1. Fig. 3b is the classification map
with 5 classes from Fig. 2. From the map, it can
be found that the cerebral infarction region has
been well delineated along with white matter, gray
matter, and CSF in the lateral ventricles. To test
the classification accuracy, the confusion matrices
were calculated on both multispectral images. In
such matrices, each element is the percentage of
pixel vectors, identified as the feasible row tissues,
which belong to clusters depicted in the associated
column tissues. The diagonal element C, is the
percentage of pixel vectors belonging to cluster i
that has been correctly classified; the off-diagonal
element C,; is the percentage of pixel vectors
belonging to cluster i that has been misclassified
as belonging to cluster j. In Table I, the correct
classification rates ranging from 94.4% (CSF) to
99.7% (BKG) were achieved using the segmented
solution of the multispectral training MR brain
images with normal physiology, while the perfor-
mance ranging from 89.5% (CI) to 99. 8% (BKG)

Table 1
Confusion matrix for the proposed FHNN using multispectral
training MR brain images with normal physiology

Cluster BKG CSF WM GM
BKG 99.7 0 0.2 0.1
CSF 0 94.4 4.7 0.9
WM 3.3 0.2 95.5 1.0
GM 0 2.2 0.6 97.2

BK G, background; CSF, cerebrospinal fluid; WM, white mat-
ter; GM, gray matter.

Table 2
Confusion matrix for the proposed FHNN using multispectral
training MR images with cerebral infarction to the brain

Cluster BKG CSF WM GM CI
BKG 99.8 0 0.2 0 0
CSF 0 91.7 6.4 1.7 0.2
WM 0 04 93.6 5.8 0.2
GM 0 2.3 4.3 92.2 1.2
Cl 0 7.1 0.5 2.9 89.5

BKG. background; CSF, cerebrospinal fluid; WM, white mat-
ter; GM, gray matter; CI, cerebral infarction.

was completed and shown in Table 2 using the
classified results of multispectral training MR
brain images with cerebral infarction.

7. Discussion and Conclusions

The proposed FHNN algorithm for tissues clas-
sification of multi-spectral MR images is investi-
gated to compute automatically with no operator
intervention in this study. Using the FHNN, the
correct classification rates estimated in the train-
ing procedure indicate that the normal and abnor-
mal tissues region can well be separated in the
lateral ventricles. The confusion matrics give the
summary statistics of the various tissues of the
brain. Accurate classification of white matter,
gray matter, and CSF in the brain is critical for
understanding how certain diseases affect these
tissues. Just regarding gray matter, white matter,
CSF, and the abnormal tissue (the main tissues in
the human brain), the correct classification rates
were increased in the multispectral MR images
segmentation.

This approach requires setting a number of
different compartments in the test images, as well
as a fuzzification parameter (m) that determines
the amount of overlap of cluster boundaries. It
can be found that within a fairly wide range of
value of m, the overall result is stable, and that
the final result is independent of the initial clusters
centroids in the experiments. Though the fuzzy
reasoning may take more computation time, the
fuzzy Hopfield neural network can provide a
more efficient mechanism and a greater potential
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to multispectral images segmentation in parallel
processing using the hardware implementation.
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